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Why charged Lepton Flavor Violation?

* The non-zero neutrino masses and mixing can introduce
flavor transitions, but the expected branching fractions are at
an extremely rare level. For example, with the present
knowledge on neutrino mixing parameters, the branching
fraction of the cLFV process p = ey is only about 107>,

* Thus, searching for the cLFV events which are SM forbidden
would be clear signal of physics beyond the SM.

* For example, P
W ’_-:‘: Y ) ,Y
/\ B: 1054 ~ 1055 /‘m 5 B:107%~ 10
u V2V, e " }ZO o
* SM prediction * Beyond SM (e.g.

 SM + v oscillation SUSY)
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Why charged Lepton Flavor Violation?

* Theoretical prospects for p—e, uN—eN and p—3e
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Figure 1: Sensitivity of a u — e conversion in “7Al that can probe a normalized capture
rate of 1077% and 107 7%, and of a 4 — ey search that is sensitive to a branching ratio of
107 "% and 10 **, to the new physics scale A as a function of ., as defined in Eqn. (2). These
correspond roughly to the discovery limits for the Mu2e experiment at the FNAL Boaoster,
currently approved, and an “ultimate experiment.” The u — e+ wvalues are indicative
of the signals-event sensitivity for MEG and its approved upgrade. Also depicted are

the currently excluded regions of this parameter space from the MEG and SINDRUM-11

experiments. See Sec 3 for references and explanations. Figure and caption adapted from

de Gouvéa and Vogel (2013,
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Why charged Lepton Flavor Violation?

* And experimental results for y—e, uN—eN and p—3e
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LFV in Meson

decays

Experimental status

Channel Upper limit Experiment
7' - pu*e* 3.59 x 10710 KTeV

n— pute¥ 6 x 100 Saturne SPES2
K} - nu*e” 7.56 x 101! KTeV

K) - 2nu*e® 1.64 x 10°10 KTeV

K} - pte” 4.7 x 10712 BNL E871
K'" > a pute” 1.3 x 10711 BNL E865, E777
DY - xtu*e* 3.4 x107° Fermilab E791
Dt - K*u*te¥ 6.8 x 109 Fermilab E791
D' - p*e™ 8.1 x 107 BaBar

D} - atu*e™ 6.1 x 1074 Fermilab E791
D} - K*u*e™ 6.3 x 1074 Fermilab E791
BY - pu*eT 9.2 x 1078 BaBar (347 fb~1)
BY - r*e¥ 1.1 x 1074 CLEO (9.2 fb™ 1)
BO — rE,7 3.8 x 10~ CLEO (9.2 fb~ 1)
B* —» Kte*u® 9.1 x 108 BaBar (208 fb~1)
BT - Kte*r* 7.7 x 1073 BaBar (348 fb~ 1)
BY - e=uF 6.1 x 106 CDF (102 pb 1)
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Experimental status

* LFV in quarkonium resonances decay

414y
B(Y(18) — £,£,)
B(T(2S) — £,6,)
B(Y(3S) — £162)
B(J/vp — £,45)
B(¢p — £,4,)

UT

6.0 x 10~6

3.3 x 1076

3.1 x107°
2.0x 1076

n/a

ET

3.2 x 1076
4.2 x 1076
8.3 x 106

e

1.6 x 10~7
4.1 x 1076
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Experimental status

* LFV in quarkonium resonances decay

€14y Ut er ep
B(Y(1S) — £145) 6.0 x 10-6 - -
B(Y(28) — £14,) 3.3 x 1076 3.2 x 1076 -
B(Y(38) — £142) 3.1 x10°° 4.2 x 1076 —

[ B(J/1p — £145) 2.0 x 10-6 8.3 x 10-6 1.6 x 107

B(¢ — £14y) n/a n/a 4.1 x 1076
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Beijing Electron Positron Collider Il (BEPCII)

Linac: 7hre injector, a 202M long
electron position linear accelerator that

o R e i o . .. can accelerate the electrons and -
r— "'v"“““" F— posu‘rons to 1.3 GeV.

BESIII: Beijing Spectrometer
I]I the main detector for BEPC I1.

The storage l'illg: A sports track shaped

accelerator with a circumference of 237.5M.
_ -

_
. .



BEPCII: a double-ring machine

RF RF

Beam energy:
T 1-2.3 GeV

Luminosity:
1x10% cm2s!

Optimum energy:
1.89 GeV

Energy spread:
5.16 x104

No. of bunches:
93

Bunch length:
1.5 cm

Total current:
091 A

SR mode:

0.25A @ 2.5 GeV

Compton back-scattering
for high precision beam
energy measurement
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BESIII Detector

BESII

RPC: 9 Electro Magnetic
layers ‘ Calorimeter {
SC

Solenoid

Barrel @
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Wire tracker (no Si); TOF + dE/dx for PID; (@3 R#&; RPPC muon
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BESIII Collaboration
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61 institutions from 13 countries

17/6/21 WIN2017, UCI 12



J/U Data Sample
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Huge and clean data which provide a good lab to probe rare
decays such as LFV process.
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I/ — ep at BESIII (1)

Phys. Rev. D 87 (2013) 112007

/b — eu 1.1x10° (58M) 1.6x107 (225M)
J/u—> et  8.3x10°(58M) - _
J/—=ut  2.0x10° (58M) - _

 Event topology: two opposite, back-to-back, charged tracks,
no obvious extra EMC showers

* Most of the backgrounds are from J/p—e*e’, J/L—ut,
J/W—rm, J/P KK, ete—ete(y) and ete—utp(y)

* To suppress these backgrounds, several powerful criteria are
employed.
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J/Y — e at BESIII (2)

Phys. Rev. D 87 (2013) 112007

* To suppress backgrounds from electron mis-ID from J/yp—ete, ete—e*e(y),
(1) no associated hits in the MUC;

(2) 0.95 <E/p< 1.50 GeV, where E is the energy deposit in the EMC and p the
momentum measured by the MDC;

(3) the absolute value of x4, (the difference between measured and
expected dE/dx for electron hypothesis over its resolution) should be less
than 1.8;
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FIG. 1 (color online). The distributions of E/p (left) and y%,.,,. (right) for the simulated electron, muon, pion, and kaon samples.
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J/Y — e at BESIII (3)

Phys. Rev. D 87 (2013) 112007

* To suppress backgrounds from muon mis-ID from J/y—=uru, ete = uu(y),
(1) Penetration depth in the MUC larger than 40 cm;
(2) E/p<0.5 GeV and 0.1 <E< 0.3 GeV

(3) the absolute value of x° 4, (the difference between measured and

expected dE/dx for electron hypothesis over its resolution) should be
less than -1.8;
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FIG. 2 (color online). The distributions of the penetration depth in the MUC (left) and the deposited energy in the EMC (right) for
the simulated muon, pion, and kaon samples.
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J/Y — e at BESIII (4)

04F Phys. Rev. D 87 (2013) 112007
0.35 |-

03f . . Nobs =4 TABLE I. Summary of systematic uncertainties (%).
Lg 0.25 3 ., Nbke = 4.75 Sources Error
ﬁ 02 . e* tracking 1.00
N 015 i [.L’ tracking 1.00
0.1 : e” ID 0.62
TE L p* ID 0.04
0.05 - - Acollinearity, acoplanarity 5.36
o_l‘.lkkA.lAA A FEPEPIN PP BRI B S Photon veto 1.19
06 07 08 09 Y 1.2 1.3 1.4 N 124
E s/Ns Total 5.84

FIG. 3. A scatter plot of E,,./+/s versus |%p|/\/s for the J/ ¢
data. The indicated signal region is defined as 0.93 = E;/\/s =

1.10 and |2 5|/ =< 0.1. With 225 M J/{ data
| BU/W > ep) < NU, /(N,,,€)<1.6x107 @ 90% C.L. |

where NYt , is calculated based on the POLE program which is a Feldman-
Cousins method including the number of observed events, the number of
background events and its uncertainty, and the systematic uncertainties.
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Prospect for J/ — et at BESIII

Simulated based on BESIII

o J/Y—er, t—'uuuut software and hardware systems
* Event topology: two opposite charged tracks, two missing
tracks

* Most of the backgrounds are from J/y—rt*K K, J/L—K K,
1/ —K*OKO

* After background suppression, the detection efficiency is
estimated to be 14%

With 1300 M J/ data
B(J/W — et)sensitivity < NUL__ /(N €)< 6.3x10¢ @ 90% C.L.

where NY , is calculated based on the POLE program which is a Feldman-
Cousins method including the number of background events and its

uncertainty, and the systematic uncertainties (assumed to be 5%), where
the number of observed events is set to be zero.
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Prospect for J/ — et at BESIII

Simulated based_on BESIII

o J/Y— e, t—'uuuut software and hg e systems
* Event topology: two opposite charged track \o
tracks 63\:6
* Most of the backgrounds are fro &’b\ L
J/l.lJ_’K*OKO e(\

e After background suppre % ’b* sfficiency is
estimated to be 14¢ Q*Q Q® )
\\S\ ith 1300 M J/{ data

LoE)< 6.3x108 @ 90% C.L.

wher Q\e 2d on the POLE program which is a Feldman-
! g the number of background events and its

un systematic uncertainties (assumed to be 5%), where

the 6bserved events is set to be zero.
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Prospect for J/ — pt at BESII|

Simulated based on BESIII

o J/Y—ux, T—eu U, software and hardware systems
* Event topology: two opposite charged tracks, two missing
tracks

* Most of the backgrounds are from J/y—rt*K K, J/L—K K,
1/ —K*OKO

* After background suppression, the detection efficiency is
estimated to be 19%

With 1300 M J/ data
B(J/W — pr)sensitvity < NUL_ /(N €)< 7.3x10° @ 90% C.L.

where NY , is calculated based on the POLE program which is a Feldman-
Cousins method including the number of background events and its

uncertainty, and the systematic uncertainties (assumed to be 5%), where
the number of observed events is set to be zero.
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Prospect for J/ — pt at BESII|

Simulated based_on BESIII

o J/Y—ux, T—eu U, software and hg e systems
* Event topology: two opposite charged track \o
tracks 63\:6
* Most of the backgrounds are fro &’b\ L
J/l.lJ_’K*OKO e(\

e After background suppre % ’b* sfficiency is
estimated to be 19¢ Q*Q ®® )
\\S\ ith 1300 M J/{ data

JoE)< 7.3x108 @ 90% C.L.

wher Q\e 2d on the POLE program which is a Feldman-
! g the number of background events and its

un systematic uncertainties (assumed to be 5%), where

the 6bserved events is set to be zero.
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e With the world largest e*e- annihilation J/ data
including more than 225 million J/ events, the
BESIII collaboration got the leading upper limit on
J/U — en decay.

* Better upper limits on J/Y — et and J/P — pr
based on 1300 million J/{ events are coming soon.

 New data taking plan has been approved! Better
constraints can be expected.
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